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Abstract
We introduce FAITHSCORE (Faithfulness to
Atomic Image Facts Score), a reference-free
and fine-grained evaluation metric that mea-
sures the faithfulness of the generated free-form
answers from large vision-language models
(LVLMs). The FAITHSCORE evaluation first
identifies sub-sentences containing descriptive
statements that need to be verified, then extracts
a comprehensive list of atomic facts from these
sub-sentences, and finally conducts consistency
verification between fine-grained atomic facts
and the input image. Meta-evaluation demon-
strates that our metric highly correlates with
human judgments of faithfulness. We col-
lect two benchmark datasets (i.e. LLaVA-1k
and MSCOCO-Cap) for evaluating LVLMs
instruction-following hallucinations. We mea-
sure hallucinations in state-of-the-art LVLMs
with FAITHSCORE on the datasets. Results re-
veal that current systems are prone to generate
hallucinated content unfaithful to the image,
which leaves room for future improvements.
We hope our metric FAITHSCORE can help
evaluate future LVLMs in terms of faithfulness
and provide insightful advice for enhancing
LVLMs’ faithfulness.

1 Introduction

Large Language Models (LLMs), such as GPT-
3 (Brown, 2020) and ChatGPT (OpenAI, 2022),
have demonstrated various language modeling ca-
pabilities. Despite their achievements, they still
lack the capacity to handle multimodal inputs ef-
fectively. As a result, a significant amount of re-
search has shifted its focus towards Large Vision-
Language Models (LVLMs) (Liu et al., 2023e;
Ye et al., 2023; Sun et al., 2023) by incorporat-
ing powerful LLMs (Touvron et al., 2023; Chi-
ang et al., 2023) and Vision Foundation Mod-
els (VFMs) (Dosovitskiy et al., 2021; Bommasani
et al., 2021). LVLMs have shown strong perfor-
mance on various multimodal tasks, such as Visual

- There is a man.
Atomic Facts

Prompt: What is unusual about this image?

The unusual aspect of this image
is that a man is ironing clothes
while standing on the back of a
car. This is not a typical scene, as
ironing clothes is usually done
indoors, in a stationary position,
and with proper safety measures.

- There are clothes.
- There is a car.
- The main is ironing clothes.
- The man is standing on     
   the  back of a car.

FaithScore: 100%

LVLM-1 Generated Answer

Atomic Facts

This is an unconventional sight,
as ironing clothes is typically
conducted indoors, in a
stationary position, and with
appropriate safety precautions.
However, the man is ironing
clothes while standing on the
front of a car. The man's actions
are not only out of the ordinary
but also potentially hazardous.

FaithScore: 80%

LVLM-2 Generated Answer

- There is a man.
- There are clothes.
- There is a car.
- The main is ironing clothes.
- The man is standing on     
   the front of a car.

Figure 1: Illustration of how FAITHSCORE evaluation
works. Given the answers generated by an LVLM, in
step 1, we identify the descriptive content (with an
LLM); In step 2, we extract corresponding atomic facts
from the identified sentences; In step 3, the faithful-
ness of all atomic facts is verified according to the input
image. In this example, the underlined part denotes
objective descriptive content in the answer. The blue
contents denote hallucinations in the answers. FAITH-
SCORE allows a more fine-grained and interpretable
evaluation of the factual precision of free-form answers.

Question Answering (Antol et al., 2015), Image
Captioning (Lin et al., 2014), and Multimodal Con-
versation (Liu et al., 2023e).

Despite the effectiveness of LVLMs, the problem
of hallucination is pervasive, often leading these
models to generate fabricated information that is in-
congruent with the provided visual input (Rohrbach
et al., 2018; Liu et al., 2023b,a; Yin et al., 2023;
Chang et al., 2024). In the context of LVLM, the
problem of hallucination can manifest as answers



containing descriptions of the input image that are
incorrect (Li et al., 2023c). As shown in Figure 1,
the LVLM-2 generates an answer with an inaccu-
rate description (i.e., standing on the front of a car),
which is not faithful towards the input image. The
phenomenon of hallucination in LVLMs introduces
potential hazards that could result in significant
consequences such as misinformation and safety
concerns, thus degrading the model’s reliability in
practical applications inevitably (MacLeod et al.,
2017). Hence, it is imperative that these issues
are thoroughly measured and addressed (Ji et al.,
2023).

Nevertheless, there have been limited explo-
rations that measure the hallucination problem in
LVLMs. Li et al. (2023c) was among the first
to measure the hallucinations of LVLMs with a
polling-based object probing evaluation method. In
addition, Gunjal et al. (2023) annotated a multi-
modal hallucination detection dataset tailored for
detailed image description evaluation. Lovenia
et al. (2023) devised Negative Object Presence
Evaluation (NOPE), which used VQA to quanti-
tatively evaluate object hallucination in LVLMs.
These approaches, however, exhibit two key weak-
nesses: (1) they focus on the limited setting of
image captioning, and none of them explored eval-
uating hallucination of the complex and free-form
answers to the open-ended questions (OpenAI,
2023) (e.g. multimodal conversations (Liu et al.,
2023e; Sundar and Heck, 2022), world knowledge-
based VQA (Schwenk et al., 2022) and visual sto-
rytelling (Huang et al., 2016)); (2) they ignore fine-
grained hallucinations of visual attributes in the
generated answer (Liu et al., 2024; Rohrbach et al.,
2018).

Evaluating hallucinations present in free-form
answer is especially challenging for two primary
reasons: (1) Free-form answers contain a hy-
brid of descriptive and analytical contents. Un-
like close-domain tasks such as image caption-
ing, answering open-domain questions in a free-
form manner does not only require generating the
question-relevant descriptive content of the given
image. It may also involve analytical content such
as rationales that include external commonsense
knowledge. As depicted in Figure 1, certain sub-
sentences (i.e., those without the underline) do not
require verification with the image input due to
their analytical nature. Because they encompass
subjective analytical content that extends beyond a
direct description of the visual inputs. Neglecting

to distinguish between analytical and descriptive
content inevitably distracts the factual measure-
ment. Thus, pinpointing the descriptive content
within the answers generated by LVLMs is signifi-
cant. (2) Model outputs are prone to the multi-
plicity of hallucinations. Current methodologies
offer a constricted view on evaluating hallucina-
tions, primarily concentrating on coarse-grained
object existences (Rohrbach et al., 2018; Lovenia
et al., 2023), while neglecting other fine-grained
elements, such as counts, colors, and the interre-
lations between objects (e.g., the spatial relation
between the person and the car in Figure 1), which
also form a significant portion of visual hallucina-
tions (Gunjal et al., 2023). Consequently, devising
a method to holistically evaluate fine-grained hallu-
cinations of visual attributes is also important.

To address the aforementioned challenges, we
propose the FAITHSCORE metric, which can eval-
uate fine-grained hallucinations in various multi-
modal tasks, such as image captioning and open-
ended questions. This metric comprises three pri-
mary components: Descriptive Sub-sentence Iden-
tification, Atomic Fact Generation, and Fact Veri-
fication, as illustrated in Figure 2. The first com-
ponent is tasked with discerning descriptive sub-
sentences within the composite content of the gen-
erated free-form answer. Thereafter, the second
component deconstructs this descriptive content
into fine-grained elements (i.e., atomic facts) (Min
et al., 2023). These atomic facts cover compre-
hensive types, such as objects attributes and in-
terrelationships. The last component emphasizes
verifying the consistency between the visual infor-
mation and the derived atomic facts via a Visual
Entailment Model (VEM) (Xie et al., 2019). Based
on the proposed metric, we evaluated several ad-
vanced LVLMs, such as LLaVA (Liu et al., 2023e)
and MiniGPT-4 (Zhu et al., 2023). From the results,
we conclude that current LVLMs still face chal-
lenges of answers that are not faithful to the input
image, which leaves a large room for improvement.

In summary, our contributions are as follows:
(1) We introduce FAITHSCORE, a metric tailored
to assess hallucinations in LVLMs free-form an-
swers to open-ended questions, which is not yet
addressed by current studies; (2) To the best of
our knowledge, we are the first to systematically
study the LVLMs free-form answers and evaluate
the fine-grained hallucinations of various types in
LVLMs; (3) In our quest to understand the hallu-
cinations manifested by LVLMs, we embark on



comprehensive experiments with six open source
models across diverse tasks and datasets. Our find-
ings underscore that the hallucination phenomenon
remains a pressing challenge for current LVLMs.
As a byproduct, we released our code1.

2 Related Work

Large Vision-Language Model Motivated by
the success of the pretraining technique in LLMs
and VFMs, the multimodal learning research com-
munity has recently shifted the research attention
to LVLMs (Awadalla et al., 2023; Li et al., 2023a).
Contemporary advanced LVLMs predominantly
feature three core components: a text encoder, an
image encoder, and a cross-modal alignment mod-
ule (Rohrbach et al., 2018). Specifically, the text
encoder often takes the form of a language model,
as seen in examples like LLaMA (Touvron et al.,
2023) and Vicuna (Chiang et al., 2023). Conversely,
the image encoder is typically derived from VFMs,
such as ViT (Dosovitskiy et al., 2021). The func-
tion of the cross-modal alignment module is to
bridge visual content with textual representation,
enhancing the text encoder’s capacity to interpret
visual semantics. To accomplish visual understand-
ing, LVLMs typically undergo multiple training
phases (Gong et al., 2023; Zhu et al., 2023; Liu
et al., 2023d,e; Ye et al., 2023; Dai et al., 2023). For
instance, Liu et al. (2023e) first aligns the image
features with the word embeddings of a pre-trained
LLM during an initial pre-training stage, and sub-
sequently fine-tunes the LVLM using specialized
language-image instruction-following datasets. For
efficiency enhancement, LVLMs often freeze pa-
rameters of the LLM or VFM and are trained with
efficient fine-tuned techniques (Ye et al., 2023; Dai
et al., 2023), such as LoRA (Hu et al., 2022).

However, in spite of the considerable advance-
ments made by LVLMs, they consistently grapple
with hallucination issues. These issues markedly
impact their efficacy across a range of vision-
language tasks (Rohrbach et al., 2018).

Vision-language Model Hallucinations and Eval-
uations Though hallucination phenomenons and
mitigation methods have been extensively studied
in the text generation literature (Ji et al., 2023;
Min et al., 2023), it is much less investigated in
vision-language models (Dai et al., 2023; Liu et al.,
2023e; Jing and Du, 2024; Jing et al., 2024). Al-
though there are a few existing works tackling this

1https://github.com/bcdnlp/FAITHSCORE.

issue, they mainly focus on the constraint problem
setting such as image captioning (Johnson et al.,
2016). For example, Rohrbach et al. (2018) pro-
pose caption hallucination assessment with image
relevance (CHAIR), which is a popular metric for
evaluating object hallucination in sentence-level
captions. They also show that popular metrics
like METEOR (Banerjee and Lavie, 2005) and
CIDEr (Vedantam et al., 2015) do not capture this.
Li et al. (2023c) extends CHAIR and proposes
“POPE”, a polling-based query technique for prob-
ing objects. Besides, Lovenia et al. (2023) devised
Negative Object Presence Evaluation (NOPE) to
quantitatively assess object hallucination through
VQA, based on “POPE”. Gunjal et al. (2023) fur-
ther proposed to detect hallucinations in more de-
tailed image captions and investigated utilizing a
reward model for mitigating them. Lu et al. (2023)
introduced an evaluation benchmark that contains
more diverse types of questions, such as Yes-or-No
and Fill-in-the-Blank.

Different from all the above, we are the first to
propose a reference-free metric for fine-grained
evaluating the answers in the open-ended visual
question-answering setting, where answers are of
free form and can be lengthy.

3 Estimating FAITHSCORE

In this section, we begin by clearly defining the
research problem in Section 3.1, followed by a
detailed framework of estimating FAITHSCORE in
Section 3.2.

3.1 Task and Settings
Suppose we have an image I and a corresponding
prompt Q. We then feed them into the LVLM
denoted as M, to obtain the generated answer A.
Our objective is to design a scoring framework to
estimate FAITHSCORE f based on the input prompt
Q, the input image I , and the generated answer A.
It is defined as: s = F(A,Q, I). s is a scalar value
ranging between 0.0 and 1.0. Notably, the devised
evaluation method is reference-free and doesn’t
require a ground truth answer.

3.2 The Evaluation Framework
In order to estimate FAITHSCOREof the generated
answers, we introduce a novel framework to im-
plement the scoring function F . The framework
comprises three key steps: descriptive sub-sentence
identification, atomic fact generation, and fact veri-
fication, as depicted in Figure 2.

https://github.com/bcdnlp/FAITHSCORE


The unusual aspect of this image is a man 
ironing clothes on the back of a minivan 
or van. This is not a typical place to 
perform this activity, as one would 
usually iron clothes in a more stationary 
and safe location, such as a home, using a 
regular ironing...

Answer

The unusual aspect of this image is a man 
ironing clothes on the back of a minivan 
or van. This is not a typical place to 
perform this activity, as one would 
usually iron clothes in a more stationary 
and safe location, such as a home, using a 
regular ironing……

Descriptive Content

Atomic Facts
 A man is ironing clothes. A man is ironing clothes. A man is ironing clothes. A man is ironing clothes.

Image

Recognizer

Verifier (VEM)

Decomposer

Figure 2: An overview of estimating FAITHSCORE,
which mainly consists of three steps: Descriptive Sub-
sentence Identification, Atomic Fact Generation, and
Fact Verification. These steps are implemented by three
modules: Recognizer, Decomposer, and Verifier. The
underlined part denotes recognized descriptive content.

Descriptive Sub-sentence Identification. Faith-
fulness in the context of LVLMs refers to the con-
sistency between the input visual content and the
generated answer. Notably, we focus on the details
in the answer that describe the input image objec-
tively, to obtain a more precise and fine-grained
understanding of the hallucination. As shown in
Figure 1, only some sub-sentences (i.e., those with
the underline) from the answer require verification
with the image input. Hence, we need to identify
the descriptive sub-sentences from the answer us-
ing a recognizer. The sub-sentences denote the
short sentences that are split by punctuation in the
answer.

Humans are capable of distinguishing descrip-
tive sub-sentences from other contents (referred
to as analytical sub-sentences) by analyzing the
semantics of the answers generated by LVLMs.
However, manually identifying descriptive sub-
sentences is a resource-intensive process, requiring
plenty of human labor. To address this problem,
we turn to ChatGPT to implement the recognizer
as a practical solution, since it has demonstrated
remarkable semantics understanding capabilities
across a wide range of natural language processing
tasks (OpenAI, 2022). Section 4.2 shows that Chat-
GPT can achieve promising performance on this
task.

To be more specific, our approach first crafts
a prompt P that encompasses task instructions
and K1 in-context learning examples. We
feed this designed prompt along with the to-
be-processed answer A into the ChatGPT, gen-
erating the recognized results, defined by the
equation Â = ChatGPT (A,P ), where Â =
{{a1, l1}, · · · , {ak, lk}} signifies the generated re-
sult, in which the answer is split into sun-sentences
a, and every sub-sentence is assigned a label l
(i.e., descriptive or analytical). Then we extract
all descriptive sub-sentences denoted as A′ =
{a′1, · · · , a′t}. For a more comprehensive under-
standing of the specific prompt P utilized in this
process, please refer to Section L of the Appendix.

Atomic Fact Generation. Despite we have iden-
tified descriptive sub-sentences from the answer,
there are still multiple facts hybrid in each sub-
sentence. Each descriptive sub-sentence consists of
multiple pieces of information (i.e., atomic facts),
each of which may contain hallucination. There-
fore, to access a fine-grained evaluation, we design
a decomposer to further break the sub-sentences
into atomic facts. In particular, we define atomic
facts as an element belonging to an entity, relation,
or attribute, inspired by the existing works (Min
et al., 2023; Hu et al., 2023). Importantly, the
atomic fact is a minimal unit of information. This
handling can ensure the verification of each ele-
ment in the answer without being disturbed by
other information. Atomic facts include three types:
entity existence, attributes, and relations. An entity
fact indicates an object’s existence. Attribute facts
relate to characteristics like color and shape. Re-
lation facts describe inter-entity relationships, e.g.,
the spatial relation. In Figure 1, we show some
examples of atomic facts.

To achieve this, similar to the process of iden-
tifying descriptive sub-sentences, we also utilize
the ChatGPT for the generation of atomic facts.
This is because ChatGPT has shown a strong abil-
ity in information extraction (Wei et al., 2023).
More precisely, we annotate a set of K2 exam-
ples for demonstrations and prompt the ChatGPT
for atomic fact generation with P ′ as follows:
Ei = ChatGPT (A′, P ′), i ∈ [1, C], where A′

are all descriptive sentences identified in step 1,
Ei = {e1i , · · · , e

ni
i } represents all ni atomic facts

belonging to the i-th category, and C stands for
the total number of categories (i.e., C = 5 in our
case) and the category include “entity”, “relation”,



“color”, “count”, and “others”. Further details re-
garding the specific prompt P ′ utilized in this pro-
cess can be found in Section L of the Appendix.

Fact Verification. In this stage, we compare the
atomic facts derived above with the image to de-
termine if the facts are faithful to the input visual
information. Specifically, to calculate the FAITH-
SCORE for the derived atomic facts, we first com-
pute the score for each fact and then aggregate
them to derive the overall score using the following
formula:

ŝ =

∑C
i=1

∑ni
j=1w

j
i · s(e

j
i , I)∑C

i=1 ni

, (1)

where ŝ represents the overall FAITHSCORE of the
answer A. The function s(eji , I) refers to the ver-
ification function (i.e., Verifier), which measures
whether eji can be supported by the input image I .
The parameter wj

i is a weighted factor that can be
used to assign different weights to different atomic
facts for various tasks. To implement function
s(eji , I), we resort to the Visual Entailment Model
(VEM) (e.g., OFA (Wang et al., 2022)), which is
able to predict whether the image semantically en-
tails the text. We elaborate on selections of the
verifier models in Section 4.3. In particular, when
the output of the VEM is positive, indicating that
the image I semantically entails the text eji result-
ing in s(e, I) = 1, and negative otherwise. In this
work, we set all the weights wj

i to 1, following the
setting of the existing work (Min et al., 2023; Kr-
ishna et al., 2023). In addition, we further introduce
a sentence-level FAITHSCORE metric as follows,
ŝs = 1 − Sh/S, where S is the total number of
descriptive sub-sentences in the answer and Sh is
the total number of descriptive sub-sentences with
hallucinations.

4 Meta-evaluate FAITHSCORE

To verify that our automatic evaluation correlates
with human judgment, we conduct human evalua-
tions in terms of hallucination. We select the test
dataset from the LLaVA paper (Liu et al., 2023e)
(LLAVA-Bench) for human evaluation, which is
constructed based on the MSCOCO dataset. This
test set is a visual instruction following dataset
comprising three distinct question types: detailed
description, conversation, and complex question.
For each type, this dataset includes 90 questions.
We select answers from LLaVA (Liu et al., 2023e)

Recognizer LVLM OverallLLaVA InstructBLIP

ChatGPT 89.84 91.58 90.74
LLaMA-7B 68.01 71.39 69.75
LLaMA-7B (w/ context) 72.80 66.76 69.68

Table 1: Comparison of recognizer LLMs’ accuracy (%)
on identifying descriptive sub-sentences. For LLaMA,
we used two different prompt settings, either to input
only the sub-sentence or both the sub-sentence and its
context into the model (LLaMA-7B w/ context).

and InstructBLIP (Dai et al., 2023) models for eval-
uation.

4.1 Human Evaluations of Hallucinations

For each test example, we craft an annotation pro-
cess to assign the faithfulness score to models’ gen-
erated answers via the subsequent steps.

Step 1: Sub-sentence Identification. Annotators
first review the given question, the corresponding
answer, and the associated image. Subsequently,
they evaluate each sub-sentence extracted from the
answer. If a sub-sentence is an objective descrip-
tion of visual information, they mark it as the “de-
scriptive” category; otherwise, it’s categorized as
“analytical”. For the “analytical” sub-sentence, an-
notators should skip the following steps. Otherwise,
they should follow the next steps.

Step 2: Atomic Fact Generation and Revision.
In this step, human annotators are asked to decom-
pose the descriptive sub-sentences into a sequence
of atomic facts. To optimize the annotation process
and reduce the time required, we pre-supply atomic
facts derived from ChatGPT. Annotators then have
the flexibility to use or modify these facts as needed.
In particular, annotators examine each atomic fact
to ensure its fidelity to the given sub-sentence. The
facts that are either redundant or non-atomic are
asked to be removed. Subsequently, the focus shifts
to the linguistic aspect, ensuring that each atomic
fact is articulated in a coherent manner and that it
accurately represents the original entity or concept
of the answer by revising facts manually. Addition-
ally, any missing atomic facts from the descriptive
sub-sentence are added. For the process of remov-
ing and revising atomic facts, please refer to the
Interface functionalities in the Appendix. Errors
introduced by the ChatGPT in this stage are shown
in Appendix G.

Step 3: Fact Verification. In this step, for every



Verifier LVLM OverallLLaVA InstructBLIP

OFA-EM 81.07 78.08 79.42
OFA 84.47 80.71 82.39
mPLUG 84.95 83.86 84.35
BLIP-2-flant5xl 78.64 77.42 77.97
BLIP-2-flant5xxl 82.36 83.20 82.83
LLaVA 67.25 67.10 67.17
LLaVA-1.5 85.65 84.49 85.07

Table 2: Comparison of the Verifier LLMs accuracy on
verifying the atomic facts (the third step).

individual atomic fact derived from the descrip-
tive sub-sentence, annotators assess its consistency
with the given image. If the content of atomic facts
is not present or contradicts the image, it’s identi-
fied as a hallucination, and accordingly marked as
“yes”. Conversely, if the element is in alignment
with the image, it’s validated and marked as “no”.
To quantify the human evaluation of faithfulness,
we employ the Likert Scale (Likert, 1932). This
approach transforms human evaluations into a tan-
gible scale, ranging from 1 (being the poorest) to 5
(being the best). The details about the annotation
process are given in Section A of the Appendix.

4.2 Recognizer Accuracy on Descriptive
Sub-sentence Identification

To obtain the performance of recognizers (e.g.
LLMs) on the sub-sentence identification task,
we construct a sub-sentence identification dataset
based on our annotated samples. The final label for
each sub-sentence is determined by the majority
voting scheme. The total number of sub-sentences
is 1, 382 and the average number of sub-sentences
in the answer is 7.68. We select the superior Chat-
GPT (Proprietary) and LLaMA-7B (Public) models
for this task and report their accuracy on identifying
descriptive sub-sentences. The results are shown
in Table 1. ChatGPT outperforms LLaMA-7B on
sub-sentence identification. For LLaMA-7B based
method, when additional context beyond the sub-
sentence itself is included, there is an improvement
on LLaVA answers test set, but overall there is no
significant improvement.

4.3 Verifier Accuracy on Fact Verification

Another key factor of our automatic method is the
reliability of the verifier visual entailment model
(VEM). Hence, we also evaluate the accuracy of
different VEMs on the annotated samples. Be-
cause of the atomic fact revision operation during

Metric r (%) ρ (%) τ (%)

BLEU-4 -1.9 -8.2 -5.8
ROUGE-L -8.7 -6.2 -4.7
METEOR -12.2 -8.5 -6.3
CHAIR 16.8 19.2 14.8
CLIP-Score 19.8 16.6 11.7
SPICE 20.2 21.3 25.4

Ours 48.2 38.4 47.6

Table 3: Correlation between each evaluation metric
and human judgment on LVLMs (i.e., LLaVA and In-
structBLIP) hallucinations, measured by Pearson’s r,
Spearman’s ρ, and Kendall’s τ . The p-value of the sig-
nificant test between our result and the baseline result is
less than 0.01.

the annotation process, there may be some differ-
ences in atomic facts labeled by different annota-
tors. To improve reliability, we only keep these
atomic facts annotated by all three annotators for
VEM evaluation. The final label for each atomic
fact is determined by the majority voting scheme.
The total number of atomic facts derived from de-
scriptive sub-sentences is 1, 380 and the average
number of atomic facts in each descriptive sub-
sentence is 2.04. For verifier VEMs, we evaluate
OFA-EM, OFA (Wang et al., 2022), mPLUG (Li
et al., 2022), BLIP-2-flant5xl, BLIP-2-flant5xxl (Li
et al., 2023b), LLaVA, LLaVA-1.5 (Table 2). More
details about these models are shown in Section B
of the Appendix. Among all models, LLaVA-1.5
performs best on fact verification, so we use it for
estimating FAITHSCORE in Section 5. Another
potential reason for employing this LVLM as a ver-
ifier is that our verification task is a discriminative
task that usually generates a shorter response, and
tends not to generate hallucination, which has been
demonstrated in our Section 5.5 (The Influence of
Answer Length on Hallucinations) and the existing
work (Min et al., 2023; Hu et al., 2023).

4.4 Correlations with Human Evaluations

To prove the superiority of our proposed metric
FAITHSCORE, we compare it with several multi-
modal generation evaluation metrics: 1) reference-
based: BLEU-{4} (Papineni et al., 2002), Rouge-
{L} (Lin, 2004), METEOR (Banerjee and Lavie,
2005), CHAIR (Rohrbach et al., 2018), SPICE (An-
derson et al., 2016) and 2) reference-free: CLIP-
Score (Hessel et al., 2021). Table 3 delineates
the correlation between various evaluation met-
rics and human judgment regarding LVLM faithful-
ness. Among all metrics, our metric FAITHSCORE
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Figure 3: Answer lengths distributions of different mod-
els on two benchmark datasets.

achieved the best correlation with human corre-
lation. More details and analysis about human
correlation can be found in Appendix F and J.

5 Evaluating Vision-Language Model
Hallucinations with FAITHSCORE

5.1 Models and Datasets

We selected six open-source LVLMs for evaluation.
1) MiniGPT-4 (Zhu et al., 2023); 2) LLaVA (Liu
et al., 2023e); 3) InstrucBLIP (Dai et al., 2023); 4)
Multimodal-GPT (Gong et al., 2023); 5) mPLUG-
Owl (Ye et al., 2023); 6) LLaVA-1.5.

To assess the performance of existing LVLMs,
we conducted experiments using two datasets. Here
is a description of each dataset: (1) MSCOCO-Cap:
This dataset is designed for the image captioning
task. We randomly select 1,000 images from the
MSCOCO (Lin et al., 2014) validation set and de-
vised the prompt as “Generate a concise caption
for the given image”; (2) LLaVA-1k: We extract
1,000 images from the MSCOCO validation set and
generated three types of prompt-answer pairs (i.e.,
detailed description, conversation, and complex
question) for each image by ChatGPT, following
the data generation method in (Liu et al., 2023e).

5.2 Hallucination Evaluation

Table 4 presents a comprehensive performance
comparison of various models in terms of FAITH-
SCORE when benchmarked on the LLaVA-1k and
MSCOCO-Cap datasets. We observe that: (1)
LLaVA-1.5 outperforms their counterparts in most
situations. This demonstrates their preeminent ca-
pability in achieving and maintaining faithfulness
during generation processes. (2) It’s worth not-
ing that different models have similar performance
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Figure 4: The relation between FAITHSCORE and num-
bers of objects (i.e., entities) in the answers (LLaVA-1k
dataset). As the number of entities increases, model
performance (i.e., FAITHSCORE) drops significantly.

across tasks. For instance, MiniGPT achieved
0.5679, 0.5768, and 0.5691 FAITHSCORE on the
“Conversation”, “Detailed Description”, and “Com-
plex Question” tasks, respectively. (3) For most
models, the performance on the MSCOCO-Cap
dataset is better than their performance on the
LLaVA-1K dataset. The potential reason may be
that model answers to the MSCOCO-Cap ques-
tions are usually shorter than their answers to the
LLaVA-1K questions (see Figure 3).

5.3 Sentence-level Hallucination Evaluation

To further understand the faithfulness of LVLMs,
we evaluate them with the FAITHSCORE (sentence-
level). Table 5 shows the sentence-level
FAITHSCORE evaluation across different LVLMs.
Multimodal-GPT achieves poor performance in
FAITHSCORE it also performs less favorably in
terms of sentence-level hallucination evaluation.
In addition, LLaVA-1.5 performs well in terms of
FAITHSCORE and FAITHSCORE (sentence-level).
This indicates the consistency between FAITH-
SCORE and sentence-level FAITHSCORE.

5.4 Other Analysis

The Influence of Answer Length on Halluci-
nations. To further elucidate the impact of an-
swer length on hallucinations, we analyze answer
lengths across various LVLMs on different datasets.
As illustrated in Figure 3, there’s a significant varia-
tion in the distribution of answer lengths produced
by different models. Multimodal GPT consistently
generates the lengthiest responses, potentially com-
promising its performance across tasks. In con-
trast, mPLUG-Owl tends to produce shorter an-



LLaVA-1k MSCOCO-Cap
Conversation Detailed Description Complex Question Overall -

Multimodal-GPT 0.5321 0.5299 0.5385 0.5335 0.5440
MiniGPT-4 0.5679 0.5768 0.5691 0.5713 0.6359
mPLUG-Owl 0.7246 0.7240 0.7015 0.7167 0.8546
InstructBLIP 0.8061 0.8161 0.8049 0.8091 0.9392
LLaVA 0.8302 0.8386 0.8392 0.8360 0.8729
LLaVA-1.5 0.8569 0.8611 0.8516 0.8566 0.9425

Table 4: FAITHSCORE evaluation results (↑) of different LVLMs on the LLaVA-1k and MSCOCO-Cap datasets.

LLaVA-1k MSCOCO-Cap
Conversation Detailed Description Complex Question Overall -

Multimodal-GPT 0.4615 0.4827 0.5131 0.4858 0.6277
MiniGPT-4 0.6441 0.6489 0.6499 0.6476 0.6017
LLaVA 0.7106 0.6979 0.7038 0.7041 0.6681
InstructBLIP 0.7231 0.7327 0.7149 0.7236 0.7970
mPLUG-Owl 0.7369 0.7163 0.7344 0.7292 0.6447
LLaVA-1.5 0.7722 0.7717 0.7699 0.7713 0.8258

Table 5: FAITHSCORE (sentence-level) evaluation results (↑) of different LVLMs.
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Figure 5: FAITHSCORE on each type of atomic facts
on the LLaVA-1k benchmark. The types are ENTITY,
RELATION, COLOR, COUNT, and OTHERS.

swers than its counterparts, hence it may generate
fewer hallucinations. Meanwhile, the image cap-
tioning task showed better faithfulness in generated
content than the other task for most LVLMs. This
may be attributed to the fact that captioning sen-
tences mainly are brief descriptions and shorter.

The Influence of Multiple Objects. Figure 4
shows how the number of objects in the answer
generated by different models affects the FAITH-
SCOREṪhe model’s faithfulness varies with the
number of objects. While all models start with rel-
atively high scores when there are few objects in
the answer, their performance generally drop as the
number of objects increases. For example, Instruct-
BLIP starts with a high FAITHSCORE of 0.895 for
1 object and sustains a relatively low score of 0.662
for 10 objects.

Analysis on Types of Hallucination To deduce
the model strengths and vulnerabilities of each in
maintaining faithfulness, we compared the faithful-
ness performance of various models across differ-
ent categories of hallucination. We mainly investi-
gated the five distinct categories: ENTITY, COUNT,
COLOR, RELATION, and OTHER attributes, moti-
vated by the existing works. From Figure 5, we can
observe that while LLaVA-1.5 consistently excels
across most categories, other models also show-
case strengths in specific domains. The bad per-
formance of some types may provide insightful
information for model improvement. Importantly,
achieving consistently high faithfulness across a
diverse range of categories remains a formidable
challenge for LVLMs.

6 Conclusion

We introduce a novel metric called FAITHSCORE

for evaluating free-form and open-domain answers
generated by large vision-language models. Com-
pared to previous metrics, FAITHSCORE offers a
finer level of granularity, interpretability, and closer
alignment with human judgments. Our quantita-
tive analysis demonstrates that current LVLMs are
prone to visual hallucination problems. We also
find that the answer length and number of objects
could affect the faithfulness of LVLMs. In addition,
the faithfulness performance of LVLMs on differ-
ent types of atomic facts varies. We expect that
FAITHSCORE will be of great value for evaluating
forthcoming advanced LVLMs.
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Limitations

FAITHSCORE focuses primarily on factual preci-
sion, ensuring that each piece of information in
a generated text is supported by the visual input.
However, it does not account for factual recall,
meaning it doesn’t penalize models for generating
fewer facts. This can be seen as unfair, as there’s
often a trade-off between precision and recall. Ad-
ditionally, the distinction between precision and
recall can sometimes be unclear, as a generation
may contain supported information but still miss
important details. To address this, we suggest re-
porting FAITHSCORE and the average length of
generated text. We leave a more holistic approach
for future work.
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A Likert Scale Guideline

For human evaluation, we utilize the Likert Scale
to get the final faithfulness score for each testing
sample. Specifically, suppose the generated answer
consists of n atomic facts, out of which x atomic
facts are determined as hallucinations. Both n and
x are labeled by the annotators. The benchmark
scoring guideline is outlined as follows:

• Score 1: All atomic facts are hallucinations,
symbolized as x == n;

• Score 2: More than half of the atomic facts
are hallucinations, represented as x > n/2;

• Score 3: Half or fewer atomic facts are hallu-
cinations, represented as n/3 <= x < n/2;

• Score 4: Less than one-third of the atomic
facts are hallucinations, which translates to
x < n/3;

• Score 5: All atomic facts accurately represent
the visual content, meaning x = 0.

B Details about VEMs

We select OFA-EM, OFA2 (Wang et al., 2022),
mPLUG3 (Li et al., 2022), BLIP-2-flant5xl, BLIP-
2-flant5xxl4 (Li et al., 2023b), LLaVA (Liu et al.,
2023e), and LLaVA-1.55 (Liu et al., 2023d) as
VEM and evaluate them based on our annotated
dataset.. OFA-EM is an open-source model which
was finetuned on the SNLE-VE dataset (Xie et al.,
2019). Hence, this model can tackle visual entail-
ment tasks directly. For the OFA-EM model, the
“neutral” is categorized as hallucination because
the OFA can’t decide whether the verified content
appears in the input image. For the other models,
they are also open-source and finetuned on the vi-
sual question answering dataset. To enable them to
tackle the visual entailment task, we get an input
a prompt “Statement: {atomic facts} Is this state-
ment right according to the image? Please output
yes or no.”, into models.

C Testing Examples of GPT-4Vision

Hallucination in Advanced GPT-4Vision Here
we test the GPT-4Vision model on four examples.
Based on the results, we can come to the conclusion

2https://github.com/OFA-Sys/OFA.
3https://github.com/X-PLUG/mPLUG.
4https://github.com/salesforce/LAVIS/tree/main/projects/blip2.
5https://github.com/haotian-liu/LLaVA.

that the GPT-4Vision answers still contain various
hallucinations despite it may have very large pa-
rameters and have been trained with a large corpus,
as shown in Figure 6.

D More benchmarks

We further compute our metric on one dataset:
LRV-Instruction (Liu et al., 2023c). The results
are shown as follows, which are consistent with
the experimental results on datasets LLaVA-1k and
MSCOCO-Cap: InstructBLIP 0.6626, Multimodal-
GPT 0.4903, mPLUG-Owl 0.6433, MiniGPT-4
0.4638, LLaVA 0.7017, LLaVA-1.5 0.7855.

E Examples of Evaluation

Here we show three examples of how FAITH-
SCORE is computed and the existing best reference-
free CLIP-Score value in Figure 7, Figure 8, and
Figure 9. Additionally, we present an example
(see Figure 10) where the proposed metric score
diverges from human judgment, illustrating a dis-
crepancy attributed to an error generated by the
recognizer system.

F More Details about Human Evaluation

We employ 3 workers for annotation and each per-
son annotated 180 testing samples, via Amazon
Mechanical Turk6. Every worker is a native En-
glish speaker. They are paid 15-20 USD per hour.
Every worker went through a qualification test of 2
hours and was tested to be highly qualified. We de-
signed one HIT to consist of one question-answer
pair. The average time to complete one HIT (in-
cluding all steps of the annotation process) is 212.8
seconds. After the annotation process, we calculate
the inter-annotator agreement rate by the Fleiss’ κ.
Firstly, we computed the Fleiss’ κ values across all
annotators for the sub-sentence identification task,
arriving at a value of 75.97%. This signifies a ro-
bust consensus among the annotators (Moore et al.,
2006). Additionally, for the definitive faithfulness
score (1-5 Likert Scale), we computed the values
involving all annotators and achieved a result of
60.0%. This concordance among the evaluation
participants suggests the human evaluation results
are reliable.

We show our human evaluation results and auto-
matic evaluation results in Table 6. From this Ta-
ble, we find that models that perform better in the

6https://requester.mturk.com/.

https://requester.mturk.com/


Model Human Automatic

LLaVA 0.7708 0.6997
InstructBLIP 0.7804 0.7165

Table 6: Human evaluation results and automatic evalu-
ation results of different LVLMs on the LLaVA dataset.

Metric Pearson’s r % Spearman’s ρ % Kendall’s τ %

BLEU-1 -15.1 -10.3 -7.5
BLEU-2 -12.7 -9.0 -6.6
BLEU-3 -7.2 -10.6 -7.6
BLEU-4 -1.9 -8.2 -5.8
ROUGE-1 -6.6 -3.0 -2.7
ROUGE-2 -5.7 -4.4 -3.4
ROUGE-L -8.7 -6.2 -4.7
METEOR -12.2 -8.5 -6.3
CHAIR 16.8 19.2 14.8
CLIP-Score 19.8 16.6 11.7
SPICE 20.2 21.3 25.4

Ours 48.17 38.44 47.61

Table 7: Correlation between each evaluation metric and
human judgment on LVLM hallucinations, measured by
Pearson’s r, Spearman’s ρ, and Kendall’s τ .

manual evaluations also have better performance
in the automated evaluations. This indicates the
high correlation between objective and subjective
evaluation.

To facilitate the annotator’s working process, we
designed a user interface, as shown in Figure 13.
Annotators have the option to start by reading the
instructions located at the top of the interface, and
they can access more detailed instructions through
a link (refer to Figure 14). Following this, annota-
tors can proceed to review the task description. In
the third section, annotators can utilize buttons for
sub-sentence identification and atomic fact verifica-
tion. Simultaneously, they are able to add, modify,
or delete atomic facts to enhance the quality of
the atomic information. For example, the annotator
should remove the duplicated atomic and add entity
category fact “There are suitcases.” in Figure 11.

Besides, we show a comprehensive correlation
comparison in Table 7. Traditional metrics that
require references (i.e., BLEU, ROUGE, and ME-
TEOR), have a poor correlation with human eval-
uation. For the open-ended question, it is hard to
get a ground truth answer. For the reference an-
swer, we use the answers provided by the LLaVA
paper. This leads to a poor correlation between
these metrics and human evaluation.

Surprisingly, CLIP-Score shows a similar corre-
lation with CHAIR which is specifically devised for
object hallucination evaluation. This demonstrates

the robustness and generalization of CLIP-Score.
The original CHAIR show reflects the severity of
the hallucinations. The larger the value of CHAIR,
the more serious the hallucination problem of the
model. The original CHAIR exhibits a pronounced
negative correlation with human evaluation. Hence,
we use the negative of CHAIR to compute the cor-
relation.

Compared with FAITHSCORE, CHAIR achieves
a sub-optimal degree of correlation. A potential rea-
son for CHAIR’s deviation from human evaluation
could be rooted in its inherent design, which nar-
rows its focus predominantly to a limited range of
objects. This constrained evaluation scope may not
adeptly deal with fine-grained and open-domain
hallucinations, thus diminishing its validity and
resonance with more comprehensive human evalu-
ations. To justify our viewpoint, we compute the
average number of objects with CHAIR for each an-
swer and the result is 2.4, which is far less than the
average number of atomic facts (i.e., 11.3) found
in our human evaluation. Amid the varied metrics
landscape, our metric FAITHSCORE achieved best
correlation with human correlation.

We further conduct an ablation study to investi-
gate the overall effect of different VE models and
the error introduced by the ChatGPT on FAITH-
SCORE. Table 8 reports the correlation between
FAITHSCORE calculated by different VE models
answers and human answers. We observed that the
higher VE model performance is directly related
to the human correlation. Table 9 reports the cor-
relation between FAITHSCORE and different VE
models calculated with the annotated atomic facts.
Similarly, the higher VE model performance is di-
rectly related to the human correlation.

G Error in Atomic Fact Decomposing

To further learn the degree of hallucination in
decomposing phrases, we further sample 100 in-
stances from the human evaluation samples and
then use ChatGPT to generate atomic facts. Fi-
nally, we found the hallucination ratio (hallucinated
atomic facts in proportion to all atomic facts) is just
2%. This verifies the effectiveness of our method.

H Experimental Detail

We run all VLMs on an NVIDIA A100 GPU. The
recognizer accuracy on descriptive sub-sentence
identification task is defined as a = Ns/N where
N is the total number of sentences in the evaluated



Metric Pearson’s r % Spearman’s ρ % Kendall’s τ %

OFA_EM 31.85 21.27 29.03
BLIP-2-flant5xxl 41.80 28.52 36.81
LLaVA-1.5 48.17 38.44 47.61

Table 8: Correlation between our ablation methods and
human judgment on LVLM hallucinations, measured by
Pearson’s r, Spearman’s ρ, and Kendall’s τ .

Metric Pearson’s r % Spearman’s ρ % Kendall’s τ %

OFA_EM 32.34 22.28 30.12
BLIP-2-flant5xxl 45.84 31.62 40.09
LLaVA-1.5 58.46 42.67 56.23

Table 9: Correlation between vem models with the an-
notated atomic facts and human judgment on LVLM
hallucinations, measured by Pearson’s r, Spearman’s ρ,
and Kendall’s τ .

dataset and Ns is the number of sentences that are
classified correctly.

I Proportions of the descriptive
sub-sentences and analytical
sub-sentences

To prove the necessity of the sentence identifica-
tion step, we calculate the proportion of descriptive
and analytical sub-sentences in answers to differ-
ent classes of input questions (Figure 12). We can
observe that the distribution of sub-sentences is sig-
nificantly different in different category questions.
For example, detailed description questions only
have a small portion of analytical sub-sentences,
while complex questions have the opposite. In ad-
dition, analytical sub-sentences account for nearly
half of the distribution of clauses in the overall
annotated dataset, illustrating the importance of
identifying analytical sub-sentences and excluding
them from the fact checking step.

J Cost and Time Analysis

Gathering accurate hallucination evaluation man-
ually for each response is both costly and time-
consuming, making it unrealistic. Therefore, al-
though our reference-free metric typically takes
more time than traditional metrics such as BLEU
and ROUGE, it is much more important for evalu-
ating model output. There is a trade-off between
evaluation results and speed. Although some met-
rics (such as BLEU) can achieve higher speed, our
metric can achieve a superior correlation with hu-
man evaluation. Compared with human evaluation,
our method can speed up the evaluation process. In
addition, we can verify multiple facts in parallel to

Model LLaVA-1k Model LLaVA-1k
Multimodal-GPT 0.5335 LLaVA 0.8360
MiniGPT-4 0.5713 LLaVA-1.5 0.8566
mPLUG-Owl 0.7167 GPT-4V 0.8788
InstructBLIP 0.8091 Gemini 0.8865

Table 10: Model performance on LLaVA-1k bench-
mark.

speed up the time. The average consuming time for
a long response is 4s, which is much less than the
manual time of 212 seconds, reducing about 1.2
USD cost.

K Samples of Description/Analytics
Sub-sentence

We provide three examples of "descrip-
tion"/"analytics" sub-sentence, where [A]
denotes the analytical sub-sentence label and [D]
denotes the descriptive sub-sentence label. (1) The
skateboard is positioned on a ramp, [D] with the
skateboarder standing on it. [D] (2) The image
features a white bird, [D] which is likely a swan.
[A] (3) The image features a young boy standing
on a skateboard, [D] which is placed on a wooden
ramp. [D] The boy is wearing a green shirt and
brown shorts, [D] and he is positioned on the
ramp, ready to ride down. [D] The wooden ramp
is placed on a sidewalk, [D] which is a common
location for skateboarding. [A] The presence of
the ramp and the sidewalk suggests that the boy
is likely practicing or enjoying skateboarding
in a public space. [A] The overall composition
of the image highlights the boy’s focus and
determination as he prepares to ride down the
ramp, [A] showcasing the excitement and thrill of
skateboarding. [A]

L Prompts

We detailed the prompts of sub-sentence identifi-
cation and atomic fact generation in Figure 15 and
Figure 16, respectively.

M Results on Closed-source Model

To comprehensively evaluate the existing LVLMs,
we further evaluate the closed-source model GPT-
4V and Gemini (Team et al., 2023) with several
open-source models. The results are shown in Ta-
ble 10. The results show the closed-source models
surpass the existing open-source model.



Image:

Prompt:

Answer:

What is the position of the skateboard in the
image? 

The image primarily focuses on a person standing
on an upside-down skateboard.

Image:

Prompt:

Answer:

Is the person riding a motorbike or scooter?

The person is riding a scooter.

Image:

Prompt:

Answer:

What kind of objects are included in the art
installation?

The art installation in the image includes:

1. Large spherical objects painted with vibrant and
colorful designs. Specifically:
   - One sphere is painted with a design that
resembles a stylized tiger face with a mix of bright
colors, including orange, black, pink, and green.
   - Another sphere, partially visible to the right, has
a design that appears to be another animal face, with
blue as one of the dominant colors……

Image:

Prompt:

Answer:

Can you describe the main features of this
image for me?

Certainly! Here's a detailed description of the main
features of the image…… 
There are two main individuals in the foreground:
  1. **Man**: He is wearing a red shirt and blue
pants. On his head, he has an umbrella hat with
multicolored panels, predominantly in red, yellow,
and blue.
  2. **Woman**: She is wearing a blue dress with a
design on the front, possibly a yellow symbol or
character…….

Figure 6: Illustration of answers generated from GPT-4Vision. Similar to existing open-source VLMs, GPT-4Vision
is still prone to the hallucination problem in the generated answer. The blue contents denote hallucinations.



There is a desk.

Atomic Facts

Image:

Prompt:

LLaVA Answer:

What is the main object in the image?

The main object in the image is a colorful beach
umbrella.

- The beach umbrella is colorful.
- The beach umbrella is the main object in
the image.

- There is a beach umbrella.

FaithScore: 100%

CLIP-Score: 0.34

Figure 7: Illustration of how FAITHSCORE is computed
for a testing sample. The underlined contents denote
recognized descriptive content.

There is a desk.

Atomic Facts

Image:

Prompt:

Answer:

Can you elaborate on the elements of the
picture provided? 

The image features a desk with a newspaper, a pair
of sunglasses, and a book. The desk is cluttered with
various items, including a pen, a pencil, and a
notebook. The newspaper is spread out on the desk,
and the sunglasses are placed on top of it. The book
is also present on the desk, possibly indicating that
the person using the desk is reading or studying. The
overall scene suggests a workspace or study area
where the person has various items and resources
available for their tasks

- There is a newspaper.
- The newspaper is on the desk.

- There is a pair of sunglasses.

- There is a book.

- There are various items.
- The items are cluttered on the desk.
- The desk is cluttered.

- There is a pen.

- There is a pencil.

- There is a notebook.

- The newspaper is spread out on the desk.
- The sunglasses are placed on top of
newspaper.
- The book is on the desk.

- There is a desk.

FaithScore: 86%

CLIP-Score: 0.37

Figure 8: Illustration of how FAITHSCORE is computed
for a testing sample. The underlined contents denote
recognized descriptive content.



There is a desk.

Atomic Facts

Image:

Prompt:

Answer:

Explain the visual content of the image in great
detail.

The image depicts a group of people walking down
a dirt road in a rural area. One person is riding a
motorcycle, while others are walking alongside the
road. There are several cars parked along the side of
the road, likely belonging to the people who are
walking or riding on the motorcycle.  In addition to
the people and vehicles, there are several trees
scattered throughout the scene, adding to the natural
setting

- There is a dirt road.
- There is a rural area.
- People are walking down a dirt road.
- The dirt road is in a rural area. 

- There is a person. 
- There is a motorcycle.
- The person is riding a motorcycle.

- There are others.
- Others are walking alongside the road.
- Others are walking. 

- There are cars. 
- The cars are parked.

- The trees are scattered.

- There is a group of people.

FaithScore: 80%

- There are trees.

CLIP-Score: 0.31

Figure 9: Illustration of how FAITHSCORE is computed
for a testing sample. The contents highlighted by the
underline denote recognized descriptive content.

Image:

Prompt:

Answer:

What is the position of the skateboard in the image? 

The image primarily focuses on a person standing on an upside-
down skateboard.

Human Annotated

FaithScore: 80%

- There is a person.
- There is a skateboard.
- The skateboard is 
upside-down. 
- A pearson is standing on an
upside-down skateboard.

Automatic

- There is a person.
- There is a skateboard.
- The skateboard is 
upside-down. 
- A pearson is standing on an
upside-down skateboard.

FaithScore: 100%

Figure 10: Illustration of the case that the proposed
metric score disagrees with human judgement

Atomic Facts

The two suitcases in the image are
black.

Generated Answer

There are two suitcases.
The suitcases are black.
There are two suitcases.
A person is standing on a sketaboard.

Figure 11: Illustration of atomic facts generated by
ChatGPT. The red contents denote the duplicated atomic
fact.
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Figure 12: Illustration of the proportions of the descrip-
tive sub-sentences and analytical sub-sentences in the
answers. “Detailed” and “Complex” denote the “de-
tailed description” and “complex question” categories,
respectively. The results are obtained from the 180 an-
notated samples.



Annotation Instructions
If there is any definition that you cannot understand, please refer to the google doc .
Annotation Procedures:
1.Read the question, answer, and image.
2.Read each sub-sentence that is extracted from the answer. If it is a description sentence, check the “description” box. Otherwise, check the “analytical” box.
3.If you check the “analytical” box, please skip the following steps and repeat step 2 on other sub-sentences.
4.Read all elements in the sub-sentence. To ensure elements are faithful to the above image, you should check them by the following process:

a.Check whether each element is reasonable according to the sub-sentence. If the element is repeated or doesn’t appear in the corresponding sub-sentence, click 
“remove” to delete it. If the element is not atomic, click the “remove” to delete it.
b.Check whether the element is a natural sentence or the sentence correctly describes the element/entity. If not, please rephrase/revise them.
c.Check whether there is any element in the sub-sentence that is not described in the elements part. If so, click “Add an Element” to add it.

i.If you find the index of an element is not correct, please ignore it.
5.For each element, check whether it contains a hallucination. If so, click “yes”. Otherwise, click “no”.

Task
We would like to request your feedback on the performance of an AI assistant in response to the user question displayed below. We are evaluating the quality of the 
generated answer by Vision-Language Models (VLMs). The VLMs can generate a response for multimodal input. The VLMs seem to generate the content (e.g., 
‘‘person’’ in the above image) which don’t exist in the image input. There are various types of hallucinations, such as entities, relations, and attributes. In addition, some 
content in the answer may not be a hallucination despite the fact that the content doesn't appear in the input image. Because they are reasonable analyses within the 
context. Our task is to identify hallucinations that appear in the answers

Elapsed Time: 0:13:3

Question:
What is the position of the skateboard in the image?
Image:

Answer:
The skateboard is positioned on a ramp, with the skateboarder standing on it.

Whether this sub-sentence is a descriptive sentence?
sub-sentence 1: The skateboard is positioned on a ramp. descriptive analytical
Do these elements contain hallucination?

Remove element 1: There is a skateboard. yes no
Remove element 2: There is a ramp. yes no
Remove element 3: The skateboard is positioned on a ramp. yes no
Remove element 4: The skateboard is on a ramp. yes no
Add an Element

Whether this sub-sentence is a descriptive sentence?
sub-sentence 2: with the skateboarder standing on it. descriptive analytical
Do these elements contain hallucination?

Remove element 1:  There is a skateboarder. yes no
Remove element 2: The skateboarder is standing on a skateboard. Yes no
Add an Element

-

+

+

-

-
-

-
-

Figure 13: System software User Interface (UI) for annotators. Annotators can read the instructions at the top of the
interface and get detailed instructions (see Figure 14) via a link. Then the annotator can read the task description. In
the third part, the annotator can click buttons for sub-sentence identification and atomic fact verification. Meanwhile,
they can add, edit, and remove atomic facts to get high-quality atomic information.



Figure 14: Instructions for data annotation. The instruction includes some definitions (e.g. atomic facts and
descriptive sub-sentence) to help annotators understand this task. Meanwhile, it also details the annotation
procedures.



Figure 15: A prompt given to ChatGPT to identify descriptive sub-sentence from answers of VLMs.



Figure 16: A prompt given to ChatGPT to generate atomic facts of VLMs answers.
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